

Komunikacja panelu Astraada HMI z wyspą Astraada IO po Modbus TCP

Konfiguracja połączenia modułu AS70-R-MP-08DIO-P-M12 ze panelem AS45TFT0703

SPIS TREŚCI

Wstęp	1
Konfiguracja Modułu Astraada IO	2
Zmiana protokołu z wykorzystaniem programu Astraada IO Configuration Tool	2
Konfiguracja projektu w Astraada HMI CFG	4
Konfiguracja połączenia pomiędzy wyspą IO i panelem operatorskim HMI	4
Potwierdzenie komunikacji	6

WSTĘP

W informatorze opisano krok po kroku sposób konfiguracji połączenia Modbuc TCP panelu Astraada HMI z multiprotokołową wyspą Astraada IO. W tym przykładzie wykorzystano panel AS45TFT0703, wyspę Astraada IO AS70-R-MP-08DIO-P-M12 oraz oprogramowanie Astraada HMI CFG v4.0.

ASTOR

KONFIGURACJA MODUŁU ASTRAADA IO

W celu uzyskania szczegółowych instrukcji można zwrócić się do podręcznika produktu dostępnego na stronie internetowej wsparcia firmy Astor (<u>Wsparcie -> Astraada -> Astraada IO</u>).

Fabryczne ustawienia modułu AS70-R-MP-08DIO-P-M12:

- Protokół: Profinet
- Adres IP: 192.168.0.2

Domyślny protokół tej jednostki to Profinet, dlatego należy skonfigurować jednostkę do pracy jako Modbus TCP Server oraz zmienić adres IP zgodnie z procesem opisanym poniżej:

Zmiana protokołu z wykorzystaniem programu Astraada IO Configuration Tool

Program, tak jak podręcznik produktu, jest dostępny do bezpłatnego pobrania na <u>stronie wsparcia</u> <u>Astor</u>.

- 1. Uruchom program Astraada IO Configuration Tool,
- Podaj obecny adres IP urządzenia, a w następnym oknie wpisz "p", aby wybrać opcję zmiany protokołu (w przypadku zapomnienia adresu IP spójrz do podręcznika produktu na stronie wsparcia)
- 3. Wybór pozycji o numerze "4" spowoduje ustawienie protokołu Modbus TCP postępuj zgodnie z poleceniami pojawiającymi się w terminalu i pamiętaj o resecie zasilania po zakończeniu konfiguracji.

Uwaga! Po zmianie protokołu adres IP zostanie ustawiony na domyślny **192.168.0.2**

- 4. Po resecie zasilania i zaświeceniu się diody Us na zielono uruchom program ponownie. Podaj domyślny adres IP urządzenia, a w następnym oknie wpisz "i", aby wybrać opcję zmiany adresu IP
- 5. Postępuj zgodnie z poleceniami pojawiającymi się w terminalu i wprowadź następujące przykładowe ustawienia:

IP adres:	192.168.1.2
Maska podsieci:	255.255.255.0
Gateway:	192.168.1.1

Pamiętaj o resecie zasilania po zakończeniu konfiguracji.

Po drugim resecie moduł jest gotowy do pracy jako Modbus TCP Server i można przystąpić do konfiguracji panelu.

KONFIGURACJA PROJEKTU W ASTRAADA HMI CFG

Konfiguracja połączenia pomiędzy wyspą IO i panelem operatorskim HMI

Pierwszym krokiem jest konfiguracja połączenia Link. W zakładce "General" skonfiguruj "Link Type" jako "Direct Link (Ethernet)" natomiast w wierszu "Device/Server" wybierz Astraada HMI oraz Modbus Device/Slave (TCP/IP).

- 📅 Data Exchanger			
	Link Properties		
Eink 1	General Paramet	er	
	Link Number:	1	
🗄 🦚 Setup		Tab 4	
	Link Name:		
	Link Type:	Direct Link (Ethernet)	
	Device (Convert	Astrondo LIMI	MadBus Daviss (Shue (TCD/ID)
	Device/server:	Astradua nini	Modeus Device/Slave (TCP/IP)
PDF File Creator			

Następnie przejdź do sekcji "Parameter", wpisz wcześniej skonfigurowany adres IP modułu Astraada IO (192.168.1.2) oraz dobierz odpowiednio parametry dla połączenia Ethernet:

L	ink Properties
	General Parameter
	IP Address: 192.168.1.2
	🕑 Use Default Port
	Port: 502
	Node Address: 1
	Timeout Time: 3 (x 0.1 Sec.)
	Command Delay: 1 (x 1 ms)
	Retry Count: 2

- Timeout Time maksymalny czas, po którym sterownik komunikacyjny odnotuje błąd połączenia,
- Command Delay czas opóźnienia pomiędzy odebraniem informacji od urządzenia, a wysłaniem kolejnych danych,
- Retry Count liczba prób, jakie driver podejmie za każdym razem aż do momentu uzyskania poprawnej odpowiedzi od urządzenia

Zaleca się, aby powyższe parametry były niezerowe.

ASTOR

Ostatnim elementem do skonfigurowania jest adresacja zmiennych z modułu I/O. Moduł AS70-R-MP-08DIO-P-M12 zawiera dane o następującym mapowaniu:

Modbus TCP – mapowanie przestrzeni wejść								
Adres (Discrete Input)	10008	10007	10006	10005	10004	10003	10002	10001
Adres (Input registers)	30001.7	30001.6	30001.5	30001.4	30001.3	30001.2	30001.1	30001.0
Stan wejść	Port 3 Pin 2	Port 3 Pin 4	Port 2 Pin 2	Port 2 Pin 4	Port 1 Pin 2	Port 1 Pin 4	Port 0 Pin 2	Port 0 Pin 4
Adres (Discrete Input)	10016	10015	10014	10013	10012	10011	10010	10009
Adres (Input registers)	30001.15	30001.14	30001.13	30001.12	30001.11	30001.10	30001.9	30001.8
Status Modułu				Zbyt wysokie napięcie US	Zbyt wysokie napięcie UA	Zbyt wysoka temp. pracy	Zbyt niskie napięcie US	Zbyt niskie napięcie UA

Modbus TCP – mapowanie przestrzeni wyjść								
Adres (Coil)	8	7	6	5	4	3	2	1
Adres (Holding registers)	40001.7	40001.6	40001.5	40001.4	40001.3	40001.2	40001.1	40001.0
Stan wyjść	Port 3 Pin 2	Port 3 Pin 4	Port 2 Pin 2	Port 2 Pin 4	Port 1 Pin 2	Port 1 Pin 4	Port 0 Pin 2	Port 0 Pin 4

W tym celu przejdź do zakładki "Tag->Link 1" i dla celów przykładu skonfiguruj dwie zmienne odpowiednio z danymi poniżej:

Tag Table (AP_1)								×
				Æ	XXI			
Internal Memory	Link 1	Data Type						
		Name	Alias For	Data Type	Address	Scan Rate	Exp	Description
	1	Input		16-Bit Unsigned Integer	30001	Normal	No	
	2	Output		16-Bit Unsigned Integer	40001	Normal	No	

POTWIERDZENIE KOMUNIKACJI

Po wgraniu projektu i podłączeniu przewodu łączącego wybrany port Panelu z modułem komunikacja powinna zostać poprawnie nawiązana. Po podłączeniu czujników, w bajcie danych wejściowych widocznym jest, że zachodzi poprawna wymiana danych.

AstraadalO_AP_1		- • ×
	Input 10000101	- 1
	Output 10000100	
		- 1

Należy tutaj zauważyć istotną cechę portów adaptacyjnych:

 - wystawienie stanu wysokiego np. bitu 3 w 40001 (tj. rozkazanie modułowi używania Pin 4 na Porcie 1 jako DO) zawsze powoduje ustawienie stanu wysokiego na korespondującym bicie rejestru 30001

Innymi słowy wszystkie bity ustawione na stan wysoki w rejestrze 40001 mają również stan wysoki w rejestrze 30001 natomiast odwrotna sytuacja nie zawsze jest prawdziwa.

Takie zachowanie spowodowane jest faktem, że pojawienie się napięcia wyjściowego na pinie jest równocześnie odczytywane przez czujnik wejścia.